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Equipment dimensioning  
Economical utilization of material   

  

1. Original method – ideally elastic material:   
  

Equipment or structures dimensioning whose material is ideally 

elastic and the stress is lower than the yield point (the range of 

Hooke´s law validity = linear dependence of stress on elongation). 

Maximal stress in the material must be lower than is the yield point! 

 
- Advantage:   Simple calculations 

 

- Disadvantage:  Such designed structure has a reserve  

   It is able to withstand higher load (in some cases!) 

tg  = E 
 = E* 
 = L/L 



PED-3 3 

2. Method taking into account elastic & plastic 
deformations of material: 
  

What is a behavior of a structure (equipment) subject to 
the elastic and plastic deformations  the structure load 

increasing? 
 

• External loading causes firstly elastic deformation.  

• When the load in some structure places is higher (places with the 

highest stress) plastic deformations start to form there (local = Y).  

• The yet higher load causes that the number of these places and 

their extent escalates. Final state is the structure collapse (rupture 

of the most loaded part, total collapse or too big deformations).  

• The state of stress in the structure just before the collapse has 

name „ limit state (extreme state, stress limit)“. 
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For structures, equipment and parts appreciation from 
the point of view of their operational reliability and safety 
following types of limit states are used:  
  

• Elastic limit state – when is the load higher than the value, first 
plastic deformations start to form somewhere in a structure  

• Strength limit state – when a material consistency is reached a 
part is broken (local or total) or a fracture rises (brittle failure, 
plastic failure, ductile, mixed, fatigue fracture or creep fracture) 
 a rupture of a wall, beam breaks, cracks in steet ... 

• Deformation limit state – when it is reached structure           
starts to have non-permissible deformations                            (lattice 

(structure usually doesn´t break but it bends)  

• Load limit state – when it is reached a structure with firm    

shape loses its connections and changes into vague structure or 
mechanism (structure connections are lost by a failure (rupture, 
break) of some structure part or parts – types of failures see above) 

(old classic 
way) 
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• Limit state of adaptation – till the state elastic 

deformations do not exceed some value  even if the 

overloading is repeated  this situation is used in 

practice  better material utilization = modern way 

of a structure design = It will be discussed in the following 

part of this lecture 

 

• Limit state of stability – when it exceeds non-
permissible deformations and/or  failures rise very 
quickly (beam buckling, cylinder loaded with external overpressure ...  

 sudden change of a structure shape – more in the part 8.) 
 

• The theory of limit states is applicable for tough 
materials with marked yield point σY. 

F


F

 a structure is adapted to the 1st overloading 
(in all profile or in some parts = stress peaks) 

EN      tough              D  zäh        IT  tenace, duttile FR   tenace         ESP   tenaz, ductil    
RUS   вязкий материал 
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3. Basic models of tough materials:   
 

1. Ideally plastic  
  

Theoretical material that does not 

exist in praxis (till the σY is reached there is no  

deformation                  for higher load it has only  

plastic  deformation  Young´s modulus E = 0) 
 

2. Ideally elastic-plastic   
 

A presumption is, that till reaching the yield point 

material behaves ideally elastic ( = E * ). 

When the yield point is reached the stress  

is constant (= σY ) but deformation rises  E = 0 
 
  

The model is often used for engineering  
calculations 

permanent 

Y 

 

 

Real 
situation 

Models 

E = ;    

Y 

P 

Y 

P 

 

 

> °C 

region of Hooke´s 
law validity 

tg  = E  

model 

reality 

no permanent 
deformation 

distinct yield p. 

without distinct 
yield point 
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3. With linear hardening   
 

When yield point is exceeded the material 
is harder (it withstands higher stress). 

Dependence of the hardening on extension 
is done by a line that slope ´ is defined  by 
the modulus of hardening E´. 
 

4. With exponential hardening   
 

When yield point is exceeded the material 

is harder according exponential dependence. 

 
 

As E´  E  difference of results of calculations according 
models 3. or 4. compared to model 2. are negligible  
 
  

In engineering praxis  ideally elastic-plastic model is used. 

´ Y 

Y  

 

 = Y + E´*( – Y) 

 = E* 

Y 

Y  

 

 = Y + a*( – Y)b 

 = E* 

These models better conform with the real stress curve 

We calculate that a material can withstand Y, but it is able to withstand higher stress (mat. hardening) 

Real 
situation 

Models 
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• For pressure vessels steels with low carbon content are used. 

Such steels have very low hardening. For such steels is the 

model valid. The simplification is on the side of higher                    

safety (calculated maximum permitted load is a bit lower      

than the real load with the hardening). 
 

• Models 3. a 4. are used for more exacting calculations with using 

of numerical methods (e.g. for very expensive materials – they allow 

higher material load compared the elastic-plastic model).  
  
• On the material plasticity temperature and time have effect too 

(time of external loading, its uniformity or variation).  
  
• In praxis in structures and/or apparatuses an additional internal 

stress exists (effect of welding, thermal treatment, forming, 

cutting, mounting etc.). It can worsen strength conditions of 

such structure (but sometimes for example a pre-stress can 

improve conditions in structure – see later). 
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4. Economical utilization of material plasticity 
  

For all examples in the chapter we suppose an ideally elastic-
plastic model (it is without any hardening).  
  

4.0 Plasticity for uni-axial tensile load of bar 

S 

F 

cross section S 

Fmax = Y 

F = F / S  Y  

Y 

4Plast 

5perm 

 

 
1 

0 

2 

3 

4 

5 

 all parts of the 
profile have the 
same stress With every next overloading the bar starts 

to be longer and longer  fatigue failure 

beam loaded 
with axial force 

beam 
overloading 

beam 
elastic 
loading 

Testing of the simplest example = a tensile load of a beam 
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Steps of the bar loading, overloading and unloading: 
 

0 – 1 – 0 F  σY * S  only elastic deformations (after  
     unloading is εperm = 0) 
1 – 2  F ≥ σY * S  plastic deformation εperm = 1-2 = 0-3 
2 – 3   unloading   after unloading bar has permanent  
     deformation εperm = 0-3 
3 – 2 – 3 F  σY * S  only elastic deformations (after  
     unloading εperm = 0-3) 
3 – 2 – 4  F ≥ σY * S  new plastic deformation εperm = 2-4 
4 – 5   unloading   after unloading the bar has   
etc.     permanent deformation εperm = 0-5 
 

In the case all material “strings” (parts) are plasticized and all 
lengthen in one time.  When is the overloading and unloading 
repeated a fatigue failure comes  
  

    It is impossible to overload such loaded bar (or structure) 
    repeatedly!! 
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4.1. Example of loading of rectangular beam with section 
        b x h with bending force 
 

• By gradual increasing of the beam loading in its profile stress rises. 

The stress increases till it reaches in outer strings the yield point ±Y. 

It is the maximal beam load according the classic method.  

• But the capacity of the beam according the theory of limit states is 

not fully utilized. For higher loading parts of the beam profile starts 

to plasticize gradually from outer parts towards to the center.  

• When is the all profile plasticized in the axis so-called plastic joint 

arises.  Originally triangular stress profile changes into a rectangular 

profile. 

F 

L / 2 L / 2 

MBmax = F * L/4 

compressive stress 

tensile stress  
F/2 F/2 
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Beam                Elastic              Part. plastic          Fully  plasticized 
profile         deformation        deformation           beam profile 

Maximal bending  moment in elastic region       
    Fe  - max. force for elastic profile loading 
  

Memax = Fe * arm =1/2 * h/2 * Y *  2/3h = 1/6 * h2 * Y  
 

Maximal bending moment for fully plasticized profile    
        FP  - max. force for fully plasticized profile 
 

Mpmax = Fp * arm = h/2 * Y *  h/2 = 1/4 * h2 * Y  

h/2 

Fp 

Fp 
Fe 

Fe 

b 

h 

Y 

2/3h 

Y Y 
plastic joint 

Force acts in a gravity center of the area. For triangle is the gravity center in 2/3 of leg, for rectangle in 1/2.  

Force size is determined by triangle or rectangle areas (with sides Y  and h/2).   Bending moment = forces x forces arm 

compression 

tension material slips 
(elongation)  
overloading is 
transfered to next 
parts nearer axis 

material slips 
(shortening) 

-Y -Y -Y 
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Coefficient of plasticity Cp is ratio Mpmax / Memax .  
  

Cp = (1/4 * h2 * Y) / (1/6 * h2 * Y) = 6 / 4 = 1.5 
  

It follows from it that for a rectangular beam profile is the maximal 
plastic bending moment 1.5 times higher than the maximal elastic 
bending moment. Therefore it is possible to increase the bending 
loading of the beam 1.5 times or decrease the safety factor (for 
example from value  x = 1.5 to  x = 1).  
  

When such fully plasticized profile is unloaded, in outer profile 
strings stress arises (as strings are elongated (down) or shortened (up)). 
The stress corresponds to an opposite bending moment with value 
Mpe2 (= beam pre-loading with this elastic moment). 
 

Mpe2 = (1 - Ce2) * Me     (only for information) 
  

Ce2 = 2/Cp – 1   coef. of residual deformation after plastic joint arise                 
   (for rectangular profile it is Ce2 = 0.33) 

Fpe2 

( after unloading is in outer 
strings reserve 33% to the Y) 

Ce2 = 2/1.5 - 1 = 0.33 
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For some profiles are values of Cp and Ce2 in following table.  

  

• For profiles with  Cp = 2 after unloading in outer strings arise 

stress with value equals to the yield point with opposite sign 

(e.g. instead tensile is compression).  

 

• For profiles with Cp  2 the opposite plastic deformation arises 

after unloading in outer strings too  danger of fatigue loading. 

 

Ex.:   Cp= 1.5; Ce2= 0.33         Mpe2= -0.666*Me  

         Cp= 2.0; Ce2= 0.00          Mpe2= -1.00*Me  = Melastmax 

         Cp= 2.2; Ce2= -0.10         Mpe2= -1.10*Me   Melastmax 
coef. of residual 

deformation 
bending moment 
after unloading 

coef. of 
plasticity 
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Fatigue loading results is fatigue failure. 

• M1  loading with such moment, when in surface strings is stress  σY;  = max. elastic load  
• M2 loading with such moment, that the profile is fully plasticized;  = max. plastic load 
• M0  profile unloading; owing to permanent deformations an elastic stress arises ( σY);   
• M3  loading with such moment when in the profile is not any stress;  
• M4 loading with such moment, when in surface strings is stress σY (M4 > M1); = new max. elastic load 
     such pre-stressed beam is able to withstand in the elastic state higher load 
• M5 loading with such moment, that the profile is again fully plasticized (σY) 
     danger situation (fatigue loading) 

F 

Fpe 

Example of alternating loading, plasticizing, unloading  and new 
loading of a beam. 

+Y 

-Y 

≤-Y 

≤+Y ≤-Y 

≤+Y 

≤-Y 

≤+Y +Y 

-Y 

M1 ≤ Memax M2 = Mp 
M4 ≤ Memax+Mpe2 

M4 ≤ 1.66*Memax 
M5 = Mp+ Mpe2 M0 = -Mpe2 M3 = +Mpe2 

 = 0 

compression 

tension 

tension 

compression 

compression 

tension 

 the beam is adapted to the 1st overloading loading in elastic region 

1st overloading unloading new loading 2nd overloading 

F3 = +Fpe2 
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Tab.1 Values of elastic and plastic section modulus We and  Wp, coefficient of  
        plasticity Cp and coefficient of residual deformation Ce2 for various profiles  

  
Profile    We  Wp = Cp*We           Cp     Ce2 
 
Square     1/6b3          1/4b3 1.5     0.33 
(side b) 
   
Square skew   b3/(6*2)      2*b3/6            2.0      0.0 
(side b) 
 
Rectangular   1/6bh2          1/4bh2              1.5      0.33 
(height h, side b) 
 
 Circle    d3/32           d3/6  1.7     0.176 
(diameter d) 
 
Annulus                  0.78*de

2*s         de
2*s                 1.27      0.575  

(diameter de, wall thickness s) 
 
Triangle        bh2/12       2*2/6*bh2 2.34      -0.145 
(base b, height h) 

b 

b 

h 

b 

de 
s 

Mpe2 = -1.145*Memax  

 σK is reached in more 
strings after unloading 

Mpe2 = (1 - Ce2) * Me  

Ce2 = 2/Cp – 1 

 danger of 
fatigue failure 

b b 

Mpe2 = Me     
σK is reached in 
outer strings 
after unloading 

h 

b 

reserve to reach the yield stress 
after a profile unloading 
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4.2. Plasticization for combine load  (tensioning + bending)   
 
Limiting force for loading with only force FPO  (maximal stress is σY) 
  

FPO = h * b * Y         (area on what acts tension  

          times max. tension Y )   

 
Limiting moment for loading with only moment MPO 
 (max. loading for fully plasticized profile) 
  

MPO = Wp * K = Wo * Cp * Y = 1/4 * b * h2 * Y  

          (=1/6 * b * h2 * 1,5 * Y) (see above the profile for the bend) 

  

The stress profile in the beam for the combine loading  
under limiting state is on the following fig. (superposition  
of both loadings has to be on the yield point =  
limiting state – maximal total load is such that  
all profile is plasticized). 

 

+ K 

- K 

+ Y 

- Y 

h 

b 

b*h

Fmax = K

F = F / S
 K 
FPO FPO 

Y 

Fmax = Y

Firstly we suppose that the beam is loaded only with an axial force FP 

Secondly we suppose that the beam is loaded only with a moment MP 
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Superposition of both loading in elastic state 

Superposition of both loading in partially plastic and 
finally in fully plastic state 

Thirdly we suppose that the beam is loaded with the axial force FP and moment MP 

+Y 

≤-Y 

+ = 

+Y 

-Y 

 

bending tension 

plastic joint 

≤ +Y 

≤ -Y 

+ = 

bending tension 
most loaded is the 
beam bottom part 
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In a distance  c  from surface a plastic joint arises.  
We specify limiting forces and their moments calculated to the 
profile axis and from them total limiting values:   
 

FP1 = c * b * Y   FP2 = (h – c) * b * Y 
 

FP = FP2 - FP1 = (h – c) * b * Y - c * b * Y = (h – 2c) * b * Y 

Superposition of both loading in fully plastic state 

Mp 

Fp 

Fp2 

Fp1 

rFp2 

-Y Y 

rFp1 

b 

h 

c 

plastic 
joint 

(h-c) 

Fp = max. force for fully plasticized profile; Mp = max. moment for f.p.p. 

c/2 

(h-c)/2 
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Moment arms of forces FP1,2  and the resulting moment 
 

rFP1 = h/2 – c/2 = (h – c) / 2  rFP2 = h/2 - (h-c)/2 = c/2 
  

MP = FP1 * rFP1 + FP2 * rFP2 = 
 

MP = c * b * Y * (h – c) / 2 + (h – c) * b * Y * c/2 = c * (h – c) * b * Y 
  
Ratio of limiting values for separate and combined loading is after 
modification:   
 

   FP / FPO = 1 – 2c/h  MP / MPO = 4 c/h * (1 – c/h) 
  
 
If we eliminate the unknown ratio c/h  from these equations we 
obtain this equation:   
 

     MP / MPO + (FP / FPO)2 = 1 

c/h = (1-FP/FPO)/2 MP/MPO = 4/2*(1-FP/FPO)*(1-1/2*(1-FP/FPO)) 

loaded with only FP0 = h*b*σY 

when σY is reached in all strings 
loaded with only MP0 = ¼*b*h2*σY 
when the profile is fully plasticized 

loaded with 
FP and Mp 

loaded with 
FP and Mp 
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Limiting loads for elastic and fully plasticized profiles are: 
  

for superposition MP = M * W  FP = F * S 
for plastic state MP0 = 1.5 * Y * W  FP0 = Y * S 
  
and after substitution of these values in the previous equation is  
      where are:  σF = limiting stress for loading with force                        
             σM = limiting stress for loading with bending moment 

1
*5.1

2











Y

F

Y

M









If we introduce a total stress  = M + F   M =  - F    we 
obtain this very important equation 

2

*5.15.1 









Y

F

Y

F

Y 











(for superposition 
of both loadings) 

W   cross-section modulus 
S     profile cross-section 

(only moment) (only force) 

(moment + force) 
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What follows from the equation for various beam loading? 
 

Only bending moment (no axial force) 
 

F = 0        σF = 0       σF / σY = 0      Than is 
 

 σΣ / σY = 1.5   
 

„Total stress σΣ“ in the beam can be 1.5 times higher than σY. 
 

Only tensile (or compression) load (= only axial force, no bending) 
  

M = 0        σM = 0       Fmax can be = Y     σF / σY = 1      Than is 
 

 σΣ / σY = 1.5 + 1 – 1.5*12 = 1.0   
 

Total stress σΣ  in the beam can be maximal equal to σY. 
 

   σF for tension (compression) cannot be higher than σY (for elast. plast. model) 

2

*5.15.1 









Y

F

Y

F

Y 











2

*5.15.1 









Y

F

Y

F

Y 











 see the previous result 

M =  - F 
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Combination of bending moment and tension 
(compression) 
 
For ratio  σF / σY = 0.333       Than is 
 

 σΣ / σY = 1.5 + 0.333 – 1.5*0.3332 ≈ 1.67   
 
Total stress σΣ  in the beam can be 1.67 times higher than σY. 
 
 
For ratio  σF / σY = 0.666       Than is 
 

 σΣ / σY = 1.5 + 0.666 – 1.5*0.6662 ≈ 1.50   
 
Total stress σΣ in the beam can be 1.50 times higher than σY. 

(For ex. the beam is loaded from 
33.3 % with a tension and from 
66.6 % with a bending moment) 

(For ex. the beam is loaded from 
66.6 % with a tension and from 
33.3 % with a bending moment) 



PED-3 24 

Dependence of   / Y on F / Y we can set in the following diagram 

When is the proportion of the total bending load of a beam in the range 
of 33 - 100%, we can use the safety factor x = 1.0 

 

Závislost celkového napětí na tahovém

0,0

0,5

1,0

1,5

2,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Tahové napětí

C
el

k
o

v
é 

n
a

p
ět

í 

1,67 

x = 1,0 x = 1,5 

1/3 2/3 

Tension stress F /Y 

Dependence of the total stress  /Y on tension stress F /Y 

Oblast elastického zatížení 

Reserve for x = 1.5 

Reserve for x = 1.0 

Economical utilisation of  plasticity 

Only 
bend 

Only tension 
(compression) 

Region of elastic loading 

To
ta

l s
tr

e
ss

   


Σ 
/

Y
 

1.0 0.0 
Share of the bending stress 

2/3 1/3 
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• From this dependence follows that for only bending loading is total 

limiting stress equal 1.5 x yield stress.  

 

• For combined loading (tensioning + bending) with prevailing 

bending stress the total limiting stress (acceptable) rises up and 

the maximum is for the ratio F / Y = 1/3, when is the total 

limiting stress  = 1.67 * Y.  

 

• Than it falls down  and for only pure tensioning it reaches 

value  = Y.   
 
 

This finding we can use for the choice of the safety factor.   

These results can be used only for a bending moment or its 
combination with a tension (compression). However, for torsion 

this method can not be used (shear stress)!!! 
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• A structure in what are only tensioning or compression stresses 

collapses (according the elastic limit state) when in some part 

(parts) the yield point is reached, it is when F = Y. For membrane 

stress (= only tension or compression) the safety factor x = 1.5  

(AF = Y / x =  Y / 1.5) is used. (AF = allowable stress for tension) 

 

• If in a structure is only pure bending we can use safety factor         

x = 1.0 (we have reserve 50 % to limiting state - AM = Y / x =  Y).  

 

• For the combination of tensioning and bending is this reserve 

higher compared with only bending. Therefore is for the case till 

the ratio F / Y = 0.67 possible to use the safety factor x = 1. For 

higher ratio values we can use the safety factor value again            

x = 1.5. 

(AM = allowable stress for bending moment) 

(A = D according Czech practice) 
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5. Plasticizing of statically indeterminate 
structures with only uni-axial tensioning  

 

As example we have a structure made from 3 beams that is on 
this fig. The structure is loaded with force F. 

The structure has following parameters: 
  

Beams lengths: l2 = h   l1 = l3 = 2*h 
  

Beams sections: A2 = A  A1 = A3 = 2*A 

F2 

F1 F3 
F1

´ F3
´ 

F 

1 3 2 
300 

l2 = h 

F 
Note: Beams sizes are set from the point of 
           view of  illustrative results (integers). 

l1 = 2h l3 = 2h 
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a) The structure is loaded with force F that is in range   

 Fel 0; 2*A*Y.  

The middle beam 2 will behave during the loading and unloading  

elastic (its deformation will be only elastic).  

Balance of power in the structure is:  
 

       F1 = F3  F1´= F3´ = F1 * sin 30° = F1 / 2  
 F = F1´+ F2 + F3´ = F1 / 2 + F2 + F1 / 2 = F1 + F2   
  

For loading with force F = 2*A*Y in the central beam 2 will be 

stress (providing that F2 = F1 = F3 = F/2 – it is specified from 

requirement that all beams have to have the same extension in 

the F direction and from the beams stiffness):  

F2 = F / 2 = 2*A*Y / 2 = A*Y    2 = F2 / A = A * Y / A = Y  
  
From it follows that till the force is reached the beam 2 (with cross 

section = A) has only elastic deformations.  

Femax 

F2

F1 F3

F1
´ F3

´

F

  

F   

F3 = F/2  
F3´= F/4 

F1 = F/2 
F2 = F/2 

F1´= F/4 axial components 
of forces F1 and F2 

balance of forces 
in the vertical 

direction 

In beams 1 and 3 is the same force, but they 
have a cross-section 2A  1,3  Y / 2 
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b) Now we suppose that the structure is loaded with 
higher force that will be in the range     

      FpI 2*A*Y; 4*A*Y.  
  

• Under these conditions the beam 2 starts to deform plastically, 
but beams 1 and 3 have still the elastic deformation.   

• After unloading beams 1 and 3 want to go to their original 
position but the beam 2 is elongated.  Therefore in the beam 2 
arise after the unloading compression pre-stress and in beams 1 

and 3 tension pre-stress.  

• For a new loading with force increasing from 0 to FpI the structure 
will behave like elastic system in all this range (see  the next fig.). 

  

• For the new loading in the central beam 2 will be following 
stresses: - compression stress (pre-stress)  no stress  tension 
stress. (remember the beam after its plasticizing  

 the structure is adapted to the 1st overloading)  

(2 is the most loaded beam)  



PED-3 30 

c) For loading of the structure with even higher force F 
that will be in range (FII 4*A*Y; 5*A*Y)  
 
 
 

• Now plastic deformations in beams 1 and 3 rise too.  
• After unloading of the structure in the beam 2 arises pressure 

plastic deformation (alternating plasticizing tension + 

compression  danger of the fatigue failure of the beam 2).   
 

d) For loading of the structure with the force higher than 
FIII  5*A*Y  

 

• Plastic deformations are in all beams and the structure comes to 
a region of uncontrollable creeping.  

• For hardening materials it is possible to load such structure but in 

praxis is not the hardening calculated (higher safety).  
 danger of fatigue failure of the beams 1 and 3 too 

F1 = F3 = F/2 = 4*A*Y /2 = 2*A*Y  

1 = 3 = 2*A*Y /2*A = Y  
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    Loading of 3 beams structure according previous fig. (p.27) 

                           Situation of the middle beam 2. 

(more illustrative is the following Planck diagram) 

Beam 2 elastic deformation for loading a) 

 

F 

3Y/E Y/E 

1AY 

2AY 

3AY 

4AY 

5AY 

0 

2Y/E 4Y/E 
0 

Elastic deformation of 
beams 1, 2 and 3 

   Plasticizing of beam 2,  
   elastic deformation of  1 and 3 

Uncontrolable creep 

Start of plasticizing of  beam 2 

Start of plasticizing  
of beams 1 and 3 

Plasticizing of 
beams 1, 2 and 3 

Utilization of plasticity of  beam 2 

Fel 

Fpl 

FII 

FIII 
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Now we will consider an ideally elastic-plastic material. It means 
that the beam 2, when it reaches the yield point, starts to deform 
plastically (on line  σY = const.). The course of the beam 2 alternating 
loading and unloading is shown in so-called Planck diagram (fig.). 

Alternating plasticizing 
of beam 2 

Max. possible adaptation of the struc-
ture to the overloading with force F 

0-1-0          elastic deformation of beam 2 
0-1-2          overloading of beam 2 and its plastic 
                    deformation (but elastic of 1 and 3) 
2-3-4          structure unloading and compression 

                    residual stress in beam 2 = its prestress 
0-1-2-5      max. possible loading of the structure 
5-6             after the structure unloading is in the  
                   beam 2 residual stress – σYc = its max. prestress 

6-5             during new loading the structure  
                   withstands 2 x > loading 
                    structure adapted on this   overloading 
0-1-7-8 ... during next repeating overloading and  
                   unloading alternate plasticization +/- comes  
                    fatigue failure of the structure 

 

2 

8´ 

7´ 

8 

7 

6 

5 

4 

0 3 

2 1 

res12 

Y p12 

t8´ t8 

fict 

Yt 

 Yc 
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In the region of elastic deformation the state of beam 2 moves on 
the line 0 – 1. When the yield point is reached the beam starts 
plastically deform on the line     1 – 2.  
 

After unloading  (line 2 – 4) a compression pre-stress arises 
(residual stress) in the beam.  
  

    σres12 = - E * εp12 
  

If the structure is loaded again so that   ε = ε2 = εY + εp12  2/E*σY 
the repeated loading will go in the elastic state on the line 4 – 2.   
In so doing it does not depend on this how many times was the 
point 2 reached (independent on a loading history).   
 

In the case the structure is adapted to this overloading. 
  

For a new reach of the yield point in the beam 2 (point 2) a 
following stress is necessary (line 4 – 2):   
  

   σ = σY + σres12 = σfictive 



PED-3 
34 

• When is the structure loading so high that plastic deformation 

reaches the value εp = εY (total deformation is  ε = ε5 = 2* εY;  it is 

the point 5), reaches the value of the residual stress after 

unloading  σres12 = - σYc (point 6).  

• In the case the beam 2 can withstand 

    the stress    σ fictivemax = 2*σY 
    = the structure maximal adaptation on its 

    overloading. 

• For a next load rising and resultant next  

    rising plastic deformation (point 7) the beam 2 starts to plastic 

deform after unloading in the compression region too (point 8). 

For the next overloading and unloading plastic deformations in 

tensile and compressive regions arise (points 7´and 8´).  
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Next alternating overloading and unloading (on lines 6 – 5 – 7 – 8 

- 7 – 7´ - 8´ ...) faces to the alternating plasticizing of the beam 

profile with result of fatigue failure (with always increasing 

permanent deformation).  

 

The structure is not able to adapt itself to such repeated 

overloading. 
 

 fatigue failure 
 

  σfict.limit. = 2 * σY 
  

The structure adaptation against an overloading can be 

only in the region  of deformations εY; 2εY . 

 for this statically indeterminate  
     structure is after its overloading  
     the maximal load in the elastic region 
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About possibilities of the adaptation a dimensionless 
parameter called the coefficient of adaptation kp decides 
(shake down, Einspieltheorem). 
It is done by the ratio of loading in the second cycle F2, 
when the structure starts to plasticize in tension and 
compression regions to loading F1 when the structure 
reaches for the first the yield point in tension: 
  

   
 
 
  
 

Note: These relations are valid only for uni-axial stress. E.g. for 
           the tri-axial stress are these relations much more  
           complicated, but the principle and results are similar.  

2
01

65

1

2 
F

F
k p
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• Loading of statically indeterminate structures with sudden shape 

changes or other discontinuities causes a rise of local secondary 

and peak tensions (stresses) in these places.  

 

• These tensions are in the wall section distributed unevenly. 

Stress peaks have only local character.  

 

• So that from it following plastic deformations do not expand into 

the peak surroundings. From it follows that a high local overrun 

of the yield point has not effect on the total strength of the 

structure (system, pressure vessel etc.).        

  

That is why for a static loading stress peaks are not taken 

into account! (it is valid only for a vessel wall thickness specification, but 
they can have effect on the fatique loading) 
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For steel shells loaded mainly with membrane stress following 

reach of these local (transitional) stresses L is specified:  
  
  
  
 
  

For technical praxis a value with safety factor 3 is assumed 
 
 
 
  
 where R = D/2 is a radius of curvature in a calculated place (D is 
a diameter) and s is a wall thickness of the membrane (shell).     
μ is Poisson constant and for steel it is μ  0.3. 
  

Ex.:  D = 2000 mm; s = 10 mm;  L = 0.78*(1000*10) = 78 mm;  
 LK = 1.65*(2000*10) = 233 mm 

sDsR
sR

L **55.0**78.0
)1(*3

*
2

22
4







sDLK **65.1 stress peak reach 

theoretical value of 
stress peak reach 
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Adjoining stress raisers (stress peaks) = local external 

forces, welds, notches, sharp shape changes etc. must have a 

distance 
 

 L ≥ L1 + L2  
 
or with the 300 % reserve   
 

 LK ≥ LK1 + LK2  
 

L 
≥ 

L 1
 +

 L
2
 

stress peak 
due to sharp 
shape change 

+ weld 

stress peak 
due to local 

ext. force 
(footing) 

L 

st
re

ss
 p

e
ak

 

membrane stress in a wall Stress peaks would not be cumulated! 
(would not overlap) 
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6. Stress categories in a structure (membrane wall) 
  
 

1. Primary stress = tensile and compressive stresses (membrane 

stresses) in a wall that are distributed uniformly or bending 

stresses that are caused by external forces.  

• After arising of a plastic deformation in some strings (parts) of a 

profile (when in the place the yield point is exceeded) they do not 

decrease too much. (remember the bar loaded with axial force) 

• That is why these primary stresses tensile and compressive are 

limited with the safety factor x = 1.5 (exceeding of the loading 

owing to working conditions or  incorrect dimensioning can cause 

a rise of a big plastic deformation with following failure).  

• Bending stresses and combined stresses (e.g. bending + tensile) 

can have safety factor x = 1. In the case the value of an allowable 

stress must not exceed the yield point (theoretically for elastic-plastic mater.). 

(Types of stresses that can be in a wall) (we can specify them from  the external 
and internal forces balance  Fext = Fint)  
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2. Secondary stress = statically indeterminate stresses that 

after exceeding the yield point do not cause bigger plastic 

deformations and after a some plasticization are able to adapt to 

an local overloading (effect of the static indeterminacy). 
  

• In this group belong for example stresses caused by local external 

forces, membrane shape change, temperature change, high heat 

flux in wall etc.  
 

• A value of these secondary stresses themselves or with 

combination (sum) with primary stresses is limited by the 

requirement that their maximal value in any direction and any 

string has to be lower than is double the yield point. 

+ Y 

- Y 

 
(remember the Planck´s diagram) 
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Example of the secondary stress in a shell (elliptical tube) with 
internal overpressure p 

A 

B 

Owing to the inter. pressure the 

elliptical tube shape wants to 

change into  the circular ones  

secondary bending stress in wall 

(primary stress = tension) 

pi 

Similar situation is in a wall with a high heat flux – see part 13 

Place A tends to the lower radius  
 outer strings have tension, inner compress. 

Place B tends to the bigger radius  
 outer strings have comp., inner tension 

+ = 

primary 
stress 

secondary 
stress 

total 
stress 

+ = 

primary 
stress 

secondary 
stress 

total 
stress 

external 
side 

internal 
side 

ps = pi*D/2s plasticization can be used here (stress peaks) 
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• For a proper design we can expect, in places with the highest 
stress, partial plasticization and residual stresses after unloading 
(= adaptation on this local overloading).      they must be  Y !! 

• But if these residual stresses (pre-stresses) reach the yield point 
there is a danger of an alternating plasticization that causes the 
fatigue failure (with big contractions)  low-cycle fatigue.  

• The adaptation of a structure or pressure vessel to an overloading 
is used for pressure tests (elimination of possible stress peaks). A 
distance on what these secondary stresses act depends on a 
vessel diameter and its thickness  (L = 1.65*√(D*s).  

  

3. Stress peaks (tertiary stresses) = stresses with local 
character that are only in some profile strings (local external forces, 
sharp deviations of form, welds, notches, material changes etc. 
Local plastic deformations practically have not effect on a structure 
(shell ...). (only in this distance  L = 1.65*√(D*s) 
They are taken into account only for low-cycle fatigue (e.g. number 
of cycles of a structure loading and unloading).  

These stress peaks are again eliminated during the vessel pressure test. 
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7. Conditions of plasticity for stress in more axis 
  

In the case we have to specify an equivalent stress e, that will be 

compared with the yield point Y. The equivalent stress is given by 

6 components of a stress tensor (σx, σy, σz, τxy, τyz, τxz).   

 
 
 

Conditions of plasticity determined by various theories differ in a 

way of a specification of the equivalent stress. As the plastic 

deformation takes place usually by shear there are used various 

forms of shear stresses for the determination of the equivalent 

stress. 
  
In engineering praxis following theories for biaxial or triaxial 

stress are used (in next text we will suppose that 1  2  3). 

The equivalent stress determined according these theories is 

compared with the yield point (e  Y) or with allowed stress σD. 

 we must re-count the real stress in a structure to 1 value that is compared 
      with the allowed stress (as the Y was specified during a uniaxial tear test) 

stress in axis x, y, z 
shear stress in planes 
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1. Hypothesis of maximal normal  stress max (tensile or  
compressive stress) 

  

Lameé for: 2 axial stress e = 1   e = the max. stress in any axis 

        3 axial stress e = 1 (tension or pressure) 
    (depending on Ytension and Ypressure) 
  
 
 

2. Hypothesis of maximal shear stress 
  

Guest:  2 and 3 axial stresses    
  

According this hypothesis a structure failure comes when a 

maximal shear stress max in any plane reaches value equal to a 

limiting shear stress for uniaxial tensile Y. The condition is 

expressed by the following relation    e = 1 - 3  Y.  

In the case of biaxial stress is 3 = 0.  

 According this hypothesis a structure failure happens when a maximal 
stress in some axis reaches a value equal to a limiting stress = yield point 

22

minmax
max

Y
Y





 



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Y  21

Than a region of safe loading is given by following conditions: 

Y 1 Y 2

For satisfying of these conditions of a structure (shell ..) a maximal value of a 
resulting stress must lie inside so-called Tresc´s hexagon (see fig.later). 
 
Now I show you some examples of various loadings and them equivalent 
stresses in the Tresc´s hexagon.  
  
2a) Uni-axial tension  in the axis 1/Y  direction;    1 ≤ σY;    2 = 0 
        in the axis 2/Y  direction;    2 ≤ σY;    1 = 0 
  
2b) Uni-axial compression   in direction of axis -1/Y;    -1 ≤ -σY;    2 = 0 
     in direction of axis -2/Y;    -2 ≤ -σY;    1 = 0 

Y  31

or for triaxial stress 

Y 3

max2 = 1 / 2 

Y 1

max3 = (1 + 3) / 2 

1/Y 

2/Y 

Mohr´s circles for our example 
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2c) Simple shear  1 = 2;  1 = -2 
  

2d) Thin-walled spherical shell with inner overpressure pi 
  

Tangential (circumferential) stress = axial stress  stress in all 
directions is the same   
 

 a = 1 = t = 2 = pi * r / 2s 
 

Similarly it is for outer overpressure (but for the case we have to take into account not only the stress 
but conditions of stability too – see later in part 8) 
 

2e) Thin-walled cylindrical shell with inner overpressure pi 
  
Tangential stress  = 2 * axial stress (see later) 
  

     a = 2 = pi * r / 2s;       t = 1 = pi * r / s = 2*2  

1/Y 

2/Y 

1/Y 

2/Y 

1/Y 

2/Y 
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2 / Y 

simple shear 

simple shear 

uniaxial tension 
in direction 1 

cylindrical shell (pi) 
(HMH allows higher load 
compared the Guest) 

cylindrical 
shell (pe) 

spherical shell (pi) 

spherical shell (pe) 

uniaxial tension 
in direction 2 

uniaxial 
compression   
in direction 2 

1 / Y 

Guest (Tresc´s  hexagon) 

HMH (von Mises ellipse) 

uniaxial 
compression   
in direction 1 

   Conditions of plasticity for uni- and biaxial stresses 

Inside is a region of a safe loading 
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3. Hypothesis HMH  
(energetic hypothesis Huber – Mises – Hencky)  
  

According this hypothesis the biggest effect on a structure 
failure has a specific energy of stress needed for a shape 

change (elongation, compression, contraction ...). For the case of a 

plane stress (bi-axial) it is valid that:  

 
  

  e
2 = 1

2 + 2
2 - 1 * 2    or       

  

 

If we divide both sides of the equation by Y and bring these results 

in the previous fig.  we obtain an ellipse that goes through vertices 

of the Tresc´s hexagon.  

 

21

2

2

2

1
* 

e

eGuest  eHMH 
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Comparing these two hypothesis we can see that 

the Guest hypothesis lies on the side of higher 

safety. The HMH hypothesis is more economical 

(it better utilizes a material strength – for simple 

shear and cylindrical shells; not for simple 

tension / press and spherical shell).  

  

In the case of tri-axial stress is a range of a safe 

stress a “hexagonal prism with pyramids” for the 

Guest´s hypothesis, in the case of HMH 

hypothesis it is a spheroid (circular ellipsoid).  
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Example: 
  

Let us suppose a thin-walled cylindrical shell with inside radius r = 500 mm and 
wall thickness s = 20 mm, that is loaded with an internal overpressure pi. The 
yield point of the shell material is Y = 230 MPa. Safety factor x = 1.5.  
Our task is to specify maximal allowed overpressure pD. 
  
 
 

It is valid that (see later) 
  

tangential stress:   t = p*r/s    axial stress:  a = p*r/2s 

radial stress:            r = -p      and                t  a  r  
  

• According the condition max  (Lameé hyp.) is   σe = σt   
 

• According the bi-axial Guest condition is σe the same   σe = σt  
    (τmax = σt / 2 ≤ τY / x = σY / (2*x)       σe = σt ≤ σY / x) 
  

    t = p * r / s  Y /x        

    pD = Y * s / (x * r) = 230*20/(1.5*500) = 6.13 MPa 

For 3D   e = t + p ≤ D  

                        p = D / (r/s+1) = ... = 5.90 MPa  

k = de/di = 2*(500+20) / (2*500) = 1.04 < 1.1       OK = thin-walled 
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• According the energetic condition HMH is 

For easier comparison of our results with the Guest hyp. we introduce symbols 
 a = a / t = 0.5;     

        b = r / t = p / (p*r/s) = -230*20/(230*500) = -0.04 
 

and after  substitution and modification we obtain 

Than the maximal inner overpressure calculated from the hypothesis (for 
plasticity conditions) is 

and allowed overpressure is  pD = pp / x = 10.21 / 1,5 = 6.81 MPa   

(x according Guest 2D it was 6.13 MPa and Guest 3D it was 5.90 MPa). 

where   x = 1.5 

t
t

e bbaa 


 *901.0...)1()()1(*
2

222  ≈ 0.90*e2D Guest 

≈ 0.86*e3D Guest 
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8. Basic methods of equipment dimensioning  
    (vessels, parts etc.)  
  
Data necessary for the equipment dimensioning:  
  

• Specification of processes that are in an equipment  

 

• Mass and energy inlets and outlets = balances 

 
• Control system (regulation, sensors, actuating devices, 

way of control, parameters fluctuation etc.) 

 
• Location in a line (= effects of surroundings, footings, 

lifting necks or eyes, connecting flanges and pipes etc.). 

(working parameters and their change in time = temperatures, pressures, heat flux  
additional thermal stress, effect of thermal dilatations, fatigue loading ...) 

(mass of treated material  external forces acting on the structure, inertial forces ...) 

(its accuracy and sensitivity  working parameters variations ...) 

(e.g. forces caused by piping thermal dilatations, mass of connected pipes ...) 
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Chart of a way of an equipment dimensioning 

Specification 
of external 

loading 

Calculation  
of internal 

stress 

Definition of 
equivalent 

stress 

Allowed 
stress  

A B C D 

Condition of 
dimensioning 

Mechanical 
properties of  

material (e.g. Y) 

Determination  
of safety  

factor 
 

calculation 

feed back 

e.g. pressure, mass 
of treated material, 
mass of equipment, 

single forces & 
moments, thermal 

dilatations .... 

e.g. from a 
balance of 

external and 
internal forces 

(= stresses) 

according a 
proper 

hypothesis 

from a data sheet of 
a chosen material or 
a material certificate 
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A) Specification of external loading 
 

During this specification a designer has to solve following 
problems: 
 

• Possibility of separation of a combined loading in simple loadings 

and subsequent utilization of laws of superposition of stresses 

and shifts (elongations etc.) = a problem simplification 
 

• Character of external forces (surface forces = out of material = internal 

or external pressure, local forces, moments, treated material 

mass ...; volumetric forces = in material = mass of equipment, 

internal stresses owing to welding or fabrication, thermal stresses 

owing to dilatation ...) 
 

• What is an effect of the loading = monotonous or changing 

(periodical or casual); way of operation (continuous  or  discontinuous). 
 effect of the low cycle fatique 
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• Conditions of a loading character and transient states (way of 

operation and its limiting conditions, way of starting and 

breakdown (after every shift or in longer intervals, fast or slow 

achievement of working parameters), equipment maintaining etc.). 
 

• Further operational conditions or restrictions (operation with 

lower or higher output (e.g. catching up a loss after a failure of production), 

allowed variation of operating temperatures and pressures, 

heating or cooling speeds and number of their changes, corrosive 

and abrasive effects of working media, fouling on working surfaces 

during operation, ways of cleaning and sanitation etc). 
 

•  these working conditions have effect on the low cycle fatigue  

   Continuous operation - at approximately constant parameters     good working cond. 
   - at variable parameters 
   Discontinuous operation - at approximately constant parameters 
   - at variable parameters        the worst working conditions 
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B) Internal stress specification 
 

For a specification of the internal stress it is necessary to solve 
following problems: 
 

• Is it possible to replace a component (= a part of an equipment) 

with a simple geometric form (sphere, cylinder, plate, beam, 

lattice structure, frame etc.) or their combination? 
 

• Is it possible to analyze the component or equipment as single 

elements for what we know solution and calculation of internal 

forces (stresses) and moments and we are able to determine 

boundary conditions for their connection? 
 

• Is it possible or have we to use a given method of calculation 

according standards, rules etc.? 

(a stress in such simple geometric form we can calculate easy) 

( easier calculation or we can use a computer program) 

(pressure vessels, supporting structures ... have to be designed according standards) 

cone+cylinder+sphere 

 effort to simplify the solution 
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• Unless, is it possible to use some simplifying presumptions and so 
the problem approximately solve? What is an error of such 

approximate solution? 
 

• Is the structure etc. statically determinate (internal forces can be 
calculated from balance with external forces) or indeterminate 

(for specification of internal forces we need deformation 
conditions in addition)? 
 

• Is it known what an accuracy of our calculation is? Are results on 

a side of higher or lower safety?  
 

• Will these calculations performed from designed operational 
parameters or from fault (extreme) conditions? 

What is an expected frequency of occurrence of these extreme conditions (ECs) and what 

are their maximal values? 

         <<    we can solve it with a safety coefficient normal (x = 1.5) or higher 
             we can solve it with a better process control, safety valves  elimination ECs 
         >      we must design such equipment on these extreme conditions 

(simplification of shape, load, 
neglecting of some parameter...) 

(see ex. in the part 6 „Thermal dilatations in HE“ 
or Guest  x  HMH  x   membrane hypotheses) 



PED-3 59 

• Are there internal stresses that arose during a part (equipment 

etc.) manufacturing (welding, pressing, forming, machining, 

casting, jointing ...)? What are their values and what is their effect 

on internal stress (together with external forces)?  

 

• What are boundary conditions, it is a way of equip. placing or join 

with other parts (supporting, hanging, way of fixation etc.)? It is 

very important parameter that has a big effect on results accuracy.  

 
 

• Are available data for solution of problems of fatigue, creep, 

determination of safety factor or calculations according stochastic 

theory of operational reliability?  

 

• Is it possible to use (for more complicated cases) a finite elements 

method or some other computer program? 

(insufficiently compensated dilatations, equipment accidental 
overloading, inaccurately made piping and flanges...) 
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C) Defining of equivalent stress 
  

Calculated triaxial stress is compared with material strength that is 
a result from a tensile test based on the uniaxial stress.  
Results must be comparable and reproducible. From tensile tests 
we obtain a start of shear of a tested bar for these characteristic 
parameters (yield point, strength limit etc.). On our real situation 
we can apply these parameters according following hypotheses:  

 

•  Main (maximal) stress reaches yield point (Y;  0,2) 

 Lamée .....  emax  Y (in one axis where is the stress maximal) 
 

•  Maximal shear stress reaches a limit of elastic shear of material     
   providing that 

    Guest ....... max  Y = 0.5 * Y   (τmax = σmax / 2) 
 

•  Tensile elongation amax reaches a maximal limiting value Y  
   on the yield point, it is that 

 St. Venant ....... max = Y / E  (from Hooke´s law  σ = E * ε) 
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• Total energy needed for elongation that can a volume unit 
absorb reaches its maximal value on the yield point 

 Haigh-Belrami ........ (Ee)max = 1/2 * Y
2 / E 

 

• Total energy needed for a shape change (elongation, 
compression, contraction ...) that can a volume unit absorb 
reaches its maximal value on the yield point 

  HMH ....................... (E)max = (1+)/2 * Y
2 / E    

 (Huber-Mises-Hencky – Poisson´s constant for steel is  = 0,3) 
 

• Octohedral shear stress reaches its maximal value that is 
expressed in form  

          max = 2/3 * Y = 0.47 * Y  
  

Every of these 6 quantities forms a base for special hypothesis for specifying of 

an equivalent stress for uni-, bi- or triaxial stresses. Its proper choice has a big 

signification from the point of view of safety in operation and economical 

utilization of material.   simplification of a triaxial stress to a uniaxial value that 
      will be compared with the allowed stress 
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D) Allowed stress 
  

 

• This stress is given as a verified material characteristic given by 

tensile tests (e.g. the yield point) divided by the safety factor x.  

  

• Safety factors are different for various engineering components, 

structures and equipment and are given by standards and 

regulations for their design, fabrication and operation.  

 

 

 

• For common engineering calculations tabulated mechanical 

properties of materials are used together with given standard 

safety factors.  

For tension or compression stresses is the safety factor according Czech standards x = 1.5 

For bending and other ways of plasticity use it can be only x = 1.0 

For stability of beams, cylinders loaded with external pressure we use x = 2.4 
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• For more exacting calculations we can take into account for 

example an effect of a change of material properties with time 

etc. (theory of reliability taking into account cumulative growth 

of damage, mathematical models of time change of material 

properties etc.).   

 
 

• Pressure vessels must be made from certified materials. 
 

• In some cases is not a part dimensioned from a stress point of 

view but according technological needs (e.g. casts wall or a 

weldment thickness, tube plate thickness etc.). 

(e.g. for nuclear power plants design, where the very high reliability is necessary) 

• A minimal wall thickness of a cast is specified from a point of view of a good 
melted iron running into all parts of a mould, iron cooling, mould production .... 

• A tube plate thickness is given not only from the stress point of view but mostly 
from the point of view of tubes beading = their fixation in the tube plate. 
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Why calculated values differ from designed (it is an equipment 
over- or undersizing)? 
  

• Variability of strength characteristics of materials compared to 
tabulated average values resulting from tests  for more exact 
calculations (e.g. for pressure vessels) we must have certificates 
for every used material. 

• Changes of mechanical properties in a part profile (for profiles 
with thicker walls is the difference higher than for thin ones  see 

example from material tables). 
• Change of material strength depends on a character of its loading 

(e.g. speed of loading, material hardening or fatigue). 
• Difference between calculated and actual working conditions of a 

structure, equipment etc. = worse working conditions (higher working pressure, 

temperature, problems with process control ...) 

• Effect of other parts of a structure that are connected with the 
designed part etc. (rigidity or elasticity of a system and its parts, their 

relationships, relationship among forces etc.) - an additional stress in pipeline 
(insufficiently compensated thermal dilatations, not very precisely made pipeline ...  
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• Effects of stress raisers (concentrators) in fixations, joints, shape 
changes (footings, supports, necks, beams, holders etc.). 
 

• Effect of additional forces caused by production technology or 
assembly (welding, pre-straining from assembly, insufficiently 
annealed cast = shrinkage stress etc.)  - typical example is 
additional force (stress) on vessel necks from a bit shorter piping 
when are flanges drawn together with higher force of screws. 
 
 

• Effect of overloading caused during operation by lack of 
technological discipline, problems with control, oper. troubles etc. 
 

• Effect of internal stress caused by micro- and macro-roughness of 
surface, notches.... 
 

• Suitability or unsuitability of a hypothesis used for a case. 
 

(it is similar like it was in the previous part) 

(A use of an inappropriate hypothesis is a designer mistake and this should not happen!) 
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Effect of bad condensate withdrawal 

Ex.: Real values from a sugar factory 

juice 

steam 

condensate 

H COND 

inerts 

LT 

standard 
condensate 

level 

condensate 
level for bad 

working 
condensate 

drain 

steam 
trap 
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Example of utilization of various hypothesis used for dimensioning of 
thick-walled cylindrical vessel loaded with internal overpressure 
  

Given:   ri – internal radius;        re – external radius;         pi – internal overpressure 

               k = re / ri = de / di – dimensionless wall thickness 
 

The task usually is to specify following 3 internal pressures: 
 

• Internal pressure (pi)i=Y, at what starts to plasticize only some string but in 

the rest of the profile are only elastic deformations.  A condition for this state is 

that the equivalent stress in the (e.g. external) string just reaches the yield point.  

• If we transform pressure to a dimensionless quantity (pi  / Y) we can obtain, for 

previously mentioned individual hypothesis, dependence of this dimensionless 

pressure (pi / Y) on the dimensionless wall thickness k (see fig. on p.71). 

• Internal pressure (pi)e=Y at what is material just plasticized in all profile 

(thickness). The condition is used for creep.  

• Internal pressure (pi)i=P at what comes to a material rupture etc. In some 

cases a material hardening is taken into account.  
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Derivation of dependence (pi / Y) – k  for membrane theory of 
vessels (for cylinders) 
  

Tangential (circumferential) stress is in a cylindrical vessel 2 x higher than an 

axial (see p. 74-76) – for sphere they are the same. Therefore we will take into 

account this stress. According a membrane theory in a membrane wall (thin-

walled shell) are only tensile stresses (for internal pressure).  The stress is the 

same in the all profile. We want to specify for what pressure the yield point is 

reached. 
  

    t = pi * ri / s  Y       where:    s = re – ri      k = re / ri        re = k * ri 
  
After substitution and modification we obtain a membrane formula: 
  

    t = pi * ri / (re – ri) = pi * ri / (k*ri – ri) = pi / (k – 1)  Y  
  

   (pi / Y) = k – 1  
  

Similar formulas can be derived for other hypotheses. 

for  s = 0    k = 1    (pi/K) = 0    pi = 0 

(= for this pressure and dimensionless wall thickness the tang. stress reaches the yield point) 

(dimensionless pressure as function of dimensionless wall thickness) 

s s 

max = tang (t ) 
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Lamée  
 (pi / Y) = (k2 – 1) / (k2 + 1)  (ASME for k  1.5) 
  
Guest   
 (pi / Y) = (k2 – 1) / 2k2  
  
St. Venant  
 (pi / Y) = (k2 – 1) / (1.3k2 + 0,4) 
  
H – B  (Haigh – Belrami)   
 (pi / Y) = 2(k2 – 1) / (6 + 10k4) 
  
H-M-H (Huber – Mises – Hencky) 

 (pi / Y) = (k2 – 1) / (3*k2) 
  
ASME  
 (pi / Y) = (k – 1) / (0.6k + 0,4)  for k  1.5 

Dimensionless pressure 
as function of 

dimensionless wall 
thickness according 
various hypothesis 

only for information 
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For fully plasticized state (profile): 
  

Guest  (pi / Y) = ln (k)    
  
H-M-H  (pi / Y) = 2/3 * ln (k) ≈ 1.155 * ln (k) 
 

Results calculated from these dependences are in the following table and on 

next figures.   

 

Boundary between thin-walled and thick-walled cylinders is at value of  k = 1.17.  

In practice more safety value k = 1.1 is used.  

  

In the region (k  1.17 – thin-walled cylinders) results according Guest are safer 

(they give lower allowed pressure) but the oversizing is not too high - see later.  

 

Calculation according the membrane theory is very simple, therefore it is used 

very often for thin-walled cylinders (k ≤ 1.1). 

only for information 
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                        Dependence of maximal dimensionless pressure on dimensionless  
             thickness of cylindrical vessel according various hypothesis. 

Dependence of  p i  /   Y        on       k 
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For thick-waled vessels results 

according H-B and H-M-H theories 
good agree with a real stress 

Results according Guest allow 
lower loading  oversized vessel 

Results according membrane 
theory allow higher loading  

very undersized vessel 
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Dependence pi/k on k
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• In the region for  k  1.17 (thick-wall cylinders) results according hypothesis H-B 

and H-M-H are in the best conformity with actual measured values.  

• Membrane formula allows much higher pressure and such cylinder would be 

very undersized!!  Results according Lamée and St. Venant undersize a cylinder 

too, but not so much like the membrane theory. 

• On the contrary results according Guest are somewhat oversized. (see previous 

figures and this table). 

Theory used        pi /Y k = 1.1 k = 1.17 k = 1.4 

Membrane  (it permits higher pi) 0.100 0.170 0.400 !!!! 

Guest  (it permits lower pi) 0.087 0.157 0.245 

Lameé 0.095 0.156 0.324 

St. Venant 0.106 0.169 0.326 

H-B 0.092 0.148 0.288 

H-M-H 0.100 0.156 0.283 

ASME 0.094 0.154 0.323 

≈ 0.100 ≈ 0.160 ≈ 0.290 

thin-wall thick-wall theor. boundary 

Correct values are 

+ 38 % 

- 16 % 

+ 12 % 

+ 12 % 

≈ 0 % 

- 2 % 

+ 11 % 

+ 6 % 

- 2 % 

- 3 % 

+5 % 

- 7 % 

- 2 % 

- 4 % 
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9. Example:  
  
 
 

Given:  
Cylindrical vessel loaded with internal overpressure pi = 0.6 MPa, 
with external diameter De = 1800 mm, material is steel with yield 
point Y = 230 MPa. 
 

Task:  
What is a needed wall thickness of the vessel   s = ?.  
Because of simplification we will study a long cylinder without 
effects of stress peaks near covers and footings. 
  

A) Specification of external loading 
External loading (= internal overpressure) acts upright to the inner 
cylinder wall and causes internal stress in the cylinder wall in 
tangential, axial and radial directions. No other forces act on the 
vessel.  

s 

pi øD 
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B) Calculation of internal stress 
 

It is a typical statically determined structure with the membrane stress. 
 

Only a balance of forces acting on the vessel is sufficient for calculation of the 
internal stresses. We can calculate only primary stresses as secondary stress 
and stress peaks are not in the vessel (we do not speak about covers etc.). 
  

The balance of forces in the axial direction (a fictitious section with a 

plane upright on the cylinder axis) 
 

    external force   Fea  *D2/4 * pi 
      (exactly for Di = D - s  D) 
 

    internal force   Fia ≈ *D*s*a 
  

• Balance of forces in the section     Fea = Fia        
 

      *D2/4 * pi  *D*s*a 
  

• Axial stress in the cylinder wall     a = pi * D / 4s = pi * r / 2s 

  

s   

 a   

 a   
p i   

f  D   
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The balance of forces in the tangential direction  
(a fictitious section with a plane in the cylinder axis) 

s 

t 

f D 

t 

pi 

     Cylinder length is   L 
  

     external force  Fet  pi*D*L   
           (exactly for Di = D - s  D) 
 

     internal force  Fit = 2*L*s*t
  
  

• Balance of forces in the section  Fet = Fit      
   

    pi*D*L*  2*L*s*t 
  
• Tangential stress in the cylinder wall   

                                                               t = pi * D / 2s = pi * r / s 
 

(for thin-walled cylinders 
is the error small – Ex.) 
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From it follows that the  t = 2*a   tubes and hoses rupture 

longitudinally!!! The radial stress   r = - p 
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C) Definition of equivalent stress according Lamée and  
     Guest hypothesis 
 

For biaxial stress is according Lamée (max) 
and Guest (max = (max - min)/2) :       
        

max = (t – 0) / 2  K = Y / 2  
  

For both cases it is valid that    e = t 
  

Condition of dimensioning is    t  D 
  
For triaxial stress (we take into account radial (compression) stress in the cylinder 
wall too) following formulas are valid for definition of equivalent stress:  
  

according Lamée      e = t  Y     e = t  D 
 

according Guest  max = (t – (-p)) / 2  K = Y / 2  

   e = t + p  D 

 

 

max2 

max3 

t -p 

Fig.14: Mohr´s circles for the cylinder 
              loaded with internal pressure 

a 0 
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D) Allowed stress + condition of dimensioning 
  

For the biaxial or triaxial stresses are in the wall only tensile and compression 
stresses (in the case of triaxial stress is the compression stress very small – see the 
next page) and there are no bending moments.  Therefore we must choose the 
safety factor x = 1.5 (see graph on p. 24).  Allowed stress is thus  
  

D = Y / 1.5 = 230 / 1.5 = 153.3 MPa 
  

Needed calculated wall thickness (without effects of a weld weakening v, allowance for 

corrosion c, manufacturing tolerance e.g. 5±0.1 mm etc.) will be for various hypotheses:  
  

Biaxial stress according Lamée and Guest and triaxial stress 
according Lamée  (1st iteration for D = De – s  De) 
  

e = t = pi * r / s = pi * D / 2s  D   
 

sc1it  pi * D / (2 * D) = 0.6*1800 / 2*153.3 = 3.52 mm       1.iter.   D = De 
 

sc2it  (0.6*(1800-3.52)) / 2*153.3 = 3.52 mm       2.iter.    Df = De- s 
  

Note: Calculation with an average diameter Df or external diameter De has not effect on  
           the resulting value of calculated wall thickness (for our data = thin-walled cylinder). 





max2

max3

t-p

Fig.14: Mohr´s circles for the cylinder
loaded with internal pressure

a0
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Triaxial  stress according Guest (D = De – s  De) 
  

e = t + pi = pi * r / s + pi = pi * D / 2s + pi   D 
  

sc1it  pi * D / (2 * (D - pi)) = 0.6*1800 / 2*(153.3 – 0.6) = 3.54 mm     (1.iter.) 

 

sc2it  (0.6*(1800 – 3.54)) / 2*(153.3 – 0.6) = 3.53 mm      (2.iter.) 

  
   

According the Czech standards ČSN 690010 
  

sc  pi * De / (2 * D*v - pi) + c       
 
(for c = 0; v = 1 – see presumption above) 
 

sc  pi * De / (2 * D - pi) = 0.6*1800 / (2*153.3 – 0.6) = 3.53 mm 
  
These individual results are from the point of view of technical praxis practically 
the same  for such thin-walled cylinder results do not depend on used theory. 





max2

max3

t-p

Fig.14: Mohr´s circles for the cylinder
loaded with internal pressure

a0

Df 
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Specification of single stresses in the cylindrical vessel wall  
(for calculated wall thickness sC = 3.53 mm)  
 

•   Tangential stress  
 

   t = pi * D / (2*s) = 0.6 * (1800 - 3.53) / (2 * 3.53) = 152.7 MPa 
  

•   Axial stress 
 

    a = t / 2 = 152.7 / 2 = 76.3 MPa 
  

•   Radial stress 
 

    r = -pi = -0.6 MPa 
  

From this comparison follows that Mohr´s circles (fig.14) for max 

are for the case of biaxial stress as well as for triaxial stress 

practically the same (pi  a and t).  
 

The distance between points 0 and –pi is practically reduced to a 

point.   





max2

max3

t-p

Fig.14: Mohr´s circles for the cylinder
loaded with internal pressure

a0
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If we utilize relations derived before for these theories for 

equivalent stress specification (the diagrams on pages 71 and 72 

are based on them) we can specify the minimal calculated wall 

thickness too. Instead the yield stress Y we use the allowed 

stress D. Results according various hypothesis are on the 

following pages.  

  

Calculations are performed for 3 pressures so that we can see an 

effect of thin- or thick-walled cylinders. 

 

Use of previously derived dependences between dimensionless 
pressure (pi/σY) and dimensionless cylinder wall thickness         

(k = de/di) for the wall thickness calculations. 
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Specification of cylinder wall thickness for given pressure according 
various hypothesis (see sooner derived formulas pi /sK = f(k) and fig. on pages 71, 72)  

 
k = re / ri = De / Di = De / (De – 2s)        s = De * (k – 1) / 2k 
  

Membrane theory 
(pi / Y) = k – 1        k = pi / σD + 1 
 

     De            σD  pi       k            s 
  (mm)               (MPa)           (MPa)      (-)         (mm) 
 

  1800          153.3               0.6 1.00391           3.51        OK    (correctly is c. 3.5) 
  1800          153.3              20.0 1.13046        103.9         a little undersized 
  1800               153.3              50.0 1.33         221.4        too undersized!!! 
               (correctly is c. 300 - 310) 

Lamée - σmax 
(pi / Y) = (k2 – 1) / (k2 + 1)                 k = ((σD + pi) / (σD –pi))

0,5 

 

    De            σD  pi       k              s 
  (mm)             (MPa)             (MPa)      (-)           (mm) 
 

  1800         153.3                0.6 1.00392             3.52           thin-wall   OK 
  1800         153.3              20.0 1.14021          110.7   boundary 
  1800         153.3              50.0 1.40          258.5   !!      thick-wall – undersiz. 
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Guest - τmax 
(pi / Y) = (k2 – 1) / 2k2     k = (σD / (σD – 2pi))

0,5 

 
     De            σD  pi      k              s 
   (mm)             (MPa)            (MPa)     (-)            (mm) 

 

   1800         153.3               0.6 1.00394              3.53        OK 
   1800         153.3             20.0 1.1632            126.3 
   1800         153.3             50.0 1.70            369         too oversized!! 
                (correctly is c. 300 - 310) 

St.Venant – εmax 
(pi / Y) = (k2 – 1) / (1.3k2 + 0.4)        k = ((sD+0.4pi) / (sD-1.3pi))

0,5 

 
     De            σD  pi     k               s 
  (mm)              (MPa)           (MPa)    (-)           (mm) 
 

   1800         153.3               0.6 1.00334             2.99     undersized (c. 3.5) 
   1800         153.3             20.0 1.1632         100.5 
   1800         153.3             50.0 1.70          258         too undersized!! 
             (correctly c. 300 - 310) 
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H-M-H - Emax 
(pi / Y) = (k2 – 1) / (3*k2)              k = (σD / (σD – 30,5 * pi))

0,5 

 
     De            sD  pi       k             s 
   (mm)           (MPa)             (MPa)      (-)          (mm) 

 
   1800         153.3               0.6 1.00394            3.06        undersized (c. 3.5) 
   1800         153.3             20.0 1.1632        108.2 
   1800         153.3             50.0 1.70         306           OK 
 

On the next table is a comparison of all previous results for very thin-walled 

cylinders, cylinders on the boundary between thin-  and thick-walled and 

thick-walled cylinders. 



PED-3 86 

pi (MPa) Hypothesis (for k ≈ 1.004) 

0,6 Membrane Lamée Guest St.Venant 
 

H-M-H 

s (mm) 3.51 3.52 3.53 2.99 3.06 

pi (MPa) Hypothesis (for k ≈ 1.16) 

20 Membrane Lamée Guest St.Venant 
 

H-M-H 

s (mm) 103.9 110.7 126.3 100.5 108.2 

pi (MPa) Hypothesis (for k ≈ 1.70) 

50 Membrane Lamée Guest St.Venant 
 

H-M-H 

s (mm) 221.4 258.5 369 258 306 

values that ≈ agree with a reality 
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Some definitions: 
  

Membranes:  There are only tensile or compression forces  
  ( stresses). Most common type of membranes =  
  rotationally symmetrical membranes.  
  They are thin-walled, with constant stress in all pro- 
  file section. They usually have continuous curvature, 
  thickness and loading (e.g. internal or external pressure).   
 

Shells:   They carry bending moments, torsion, shear, local  
  forces etc. too. The stress is not uniform in a wall. 
  In a wall profile section are not only tensile or  
  compression stresses but bending stress too (and the 
  bending stress can vary (see above – the elliptical tube). 
     

Loading: Treated fluid pressure (internal, external, hydrostatical). 

  Self-weight, weight of treated material. 
  Local forces and moments (supports, attachment,  ...). 

  Wind, snow, seismicity. 

(spheres, cylinders, cones) 
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Examples:   

• Heat exchangers, evaporators. 

•  Vessels, tanks, silos.  

•  Reactors, columns, absorbers. 

•  Piping systems. 

Membrane theory 

Measuring 

σekv / σY 

 
σt / σY 

1.17 1.0 2.0 k = re /ri 

σr / σY 

σ / σY 

Stress in cylindrical 
wall according: 

k < 1.17  measured stress is < calculated  results are on the side of safety 
k > 1.17  measured stress is > calculated  undersized wall thickness 

MT can 
be used 
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Laplace formula applied to membranes 
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 N =  * s 

N =  * s 

 

Laplace general equation 

N N/m  normal force in section for  = const. (angle between axis of  
  rotation  and section plane that cross the axis of rotation); the 
  force is related to 1 m of membrane length (in the section)  
                                it does not depend on a membrane thickness 
N N/m  normal force in section for  = const. (angle between chosen 
  base plane and section plane that passes through axis of  
  rotation) 
R m     radius of curvature of membrane in section for  = const. 
 

R m     radius of curvature of membrane in section for  = const. 

F = 0 
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Ex.1: Sphere, hemisphere – internal overpressure p 
  

   R = R = R;      pz = - p     
  

   N = N = N              for sphere (axis can be chosen at will, forces  
    must be the same) - it is symmetrical  
                 according its center 
   
    normal force in every section going  
    by the sphere center 
 
or for a membrane with wall thickness s is:   
 

p
R

N

R

N
 

2

* Rp
N 

s

Rp

s

N

*2

*




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  Ex.2: Cylinder – inner overpressure p, wall thickness  s 
 

  R =  ;    R = R;     pz = - p 

R

N
p

R

N

R

N








  RpN *


s

Dp

s

Rp

s

N
t

*2

**
 

 

N is not possible to specify from the Laplace formula  we 
can specify it for example from the forces balance in a cross 
section upright to the cylinder axis  (see above in this chapter. 
Example ad C) 
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Section with plane β that 
passes through axis 

Rα=∞ 

α 
Nβ 

Nβ+dNβ 

Section with plane α 
that is upright axis 

Rβ=R β Nα 

Nα+dNα 


